Electrolysis-Utility Integration Workshop DOE Hydrogen Program Overview Broomfield, Colorado

Pete Devlin

DOE Hydrogen Program
Production R & D Team Leader

September 22, 2004

Hydrogen Providing a Clean, Secure Energy Future

All drivers in a hydrogen economy are important:

- Energy Security
- ➤ CO₂ and Criteria Emissions Reductions
- > Economic Competitiveness

DOE hydrogen research aim is to realize hydrogen's benefits by the 2030 – 2040 time frame while maintaining a balanced portfolio of RD&D on other energy-saving transportation and renewable technologies.

Hybrids are a Bridge

Hybrid vehicles are a bridge technology that can reduce pollution and our dependence on foreign oil until long-term technologies like hydrogen fuel cells are market-ready.

Hybrid/Hydrogen FCV Strategy

- In 2040, if hydrogen reached its full potential, the use of FCV's could generate a savings of 11 million barrels per day in oil consumption in the light-duty transportation sector.
- Using the same assumptions, in 2040, U.S. carbon reduction could be 19% of our total emissions, equivalent to 500 million metric tons per year

Timeline for a Hydrogen Economy

Positive commercialization decision in 2015 leads to beginning of massproduced hydrogen fuel cell cars by 2020

H2 Production Strategies

Distributed natural gas and electrolysis economics are important for the "transition"

Energy resource diversification is important for the long-term

Sustainable Paths to Hydrogen

Hydrogen and Fuel Cell FY2005 Budget Request

Technology Validation (\$18.0M)

Total FY-05 Request: \$172.8M

Hydrogen Production & Delivery Budget

FY 2005 Budget Request = \$25.3M FY 2004 Appropriation = \$22.6M

Cost of Renewable Electricity

- Over the past two decades technology advances have steadily reduced the cost of renewable energy.
- Continued reductions in the cost of renewables are key to realizing a future hydrogen electric economy.
- With electricity costs at 3-7¢/kWh, wind-electrolysis is likely to be the first economical renewable hydrogen production system.

Key Barriers – Distributed Hydrogen Production

Reforming of Natural
Gas and/or Liquid Fuels

- Capital costs
- Operation and maintenance

Water Electrolysis

- Electrolyzer capital costs and efficiency
- Grid electricity emissions

Renewable Electrolysis

 Electrolyzers use electricity to separate water into hydrogen and oxygen:

$$2H_2O$$
 + electricity $2H_2 + O_2$

- Renewable technologies, like photovoltaics (PV), wind, and hydroelectric, can provide the power to drive electrolysis.
- Technical Challenges
 - Cost
 - System Efficiency
 - Renewable Integration
 - Electricity Costs

Future Directions

- Address outcomes of the Utility Electrolysis Workshop
- Revise draft RD&D to reflect new developments and analyses results
- Implement NRC recommendations with emphasis on:
 - Electrolyzer development to lower capital costs
 - Distributed reforming
- Select new projects from solicitation that achieve cost and efficiency targets

The Goal: Integrated Renewable Hydrogen-Electricity Production

